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ABSTRACT

In this paper, we obtain the general solution of equations of motion of axisymmetric problem of micro-isotropic,
micro-elastic solid in static case. The equations of motion of axisymmetric problem are converted into vector
matrix differential equations using the Hankel transform. Applying the technique of solving the eigen value
problem, the general solution of the said problem is obtained. The results of the corresponding problem in linear
micropolar elasticity are obtained as a particular case of this paper.
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I. INTRODUCTION

The classical theory of elasticity describes well the behavior of construction materials provided the stresses
do not exceed the elastic limit and no stress concentration occurs. The discrepancy between the results of the
classical theory of elasticity and the experiments [1] appears in all the cases when the microstructure of the body
is significant. The materials having microstructure are metals, polymers, rocks and concrete. The influence of
microstructure is particularly evident in the case of elastic vibrations of high frequency and/or small wave
length. To remove the short comings of the classical theory of elasticity, Eringen [2] introduced the theory of
micromorphic materials which includes the micromotion. This theory was simplified by Koh [3] extending the
concept of coincidence of principal directions of stresses and strain of classical elasticity and named it as the
theory of micro-isotropic, micro-elastic materials. Nowacki [4] has shown that the equations of motion of
axisymmetric problem of micropolar solid can be decomposed into two mutually independent sets of three
equations. Das et al. [5, 6] have obtained general solution of equations of motion in thermoelasticity and
magnetothermo-elasticity using eigen value approach to solve vector matrix differential equation.

In the present paper, we apply the technique of solving an eigen value problem to obtain the general
solution of the axisymmetric problem of micro-isotropic, micro-elastic solid. The results of the corresponding
problem in micropolar theory [7] are obtained as a particular case of it.

I1. BASIC EQUATIONS
The equations of motion and the constitute equations of micro-isotropic, micro-elastic solid under the
absence of body forces and body couples are given by Parameshwaran and Koh [8]
The displacement equations of motion are

(A +A, = A)V(VU)+(A, + AV +2A,(Vxg) =pl ®
2(B, +B;)V(V.§)+2B,V?§—2A,(Vxu)-4A4 = pig 2)
Bi@op ki +2BaBiy e — Pa i —2A0) :%Pj@u) 3)

The stress, couple-stress and stress moment are as follows.
t(km) = Aleppé‘km + 2Azekm

4
tm) = Opkmy = 2A33pkm(rp + ¢p) ES;
O km = _A4¢pp5km - 2A5¢(km) ©6)
temm = Bi@pk Omn + 2B2 @ m i )
My =—2(B3d  + By, + Bsd, ,04) 8)
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where

A =A+0,, B, =17,,

A, =u+0, 2B, =1, + 1,

A =0, B, =27, + 27, + 7, — 7y,
A, =—0o,, B, =—27,,

As =—0,, B =27,

©)

subject to the conditions
3A +2A,>0, A, >0, A, >0,

3A, +2A, >0, A >0,

3B,+2B, >0, B2>0
B,>0, -B,<B,<B,, B,+B,+B;>0. (10)
where p is the average mass density, j is the micro-inertia. The macro displacement in the micro elastic

continuum is denoted by U, and the micro deformation by ¢(mn) , for the linear theory we have the macro-strain

the micro-strain ¢(mn) and micro-rotation

n,m’

: 1
€m = €x.m), the macro rotation vectorr, zzgkmnu

the relative stress (micro-

1 .
¢, = Egpkm¢km . The stress measures are the asymmetric stress (macro-stress)t,

stress) O, and the stress moment t, . and also the couple stress tensor M, =& .t

pnm “kmn *

The symbol ()
appeared in suffix of a quantity indicate that the quantity is symmetric and [ ] shows the quantity is skew-
symmetric. A,|, 61, Gy, Os, T3, T4, T7, Tg and Tty are the ten elastic moduli. Further, & is the permutation

kmn

pkm

symbol and 0, is the Kronecker delta. The ( . ) denotes the derivatives with respect to time.

I1l. FORMULATION AND SOLUTION OF THE PROBLEM
The problem is to find the general solutions of axisymmetric equations of static micro-isotropic, micro-

elastic material under the absence of body forces and body couples, we take U = ¢ = 0and the cylindrical

coordinates r,@ and Z are introduced.
The equations of motion (1) and (2) for the static case are as follows.

2, _Ur_ 20Uy 104, 99, |_
(A 770, - B0 ()2 2O =
) u, 2 ou, 1 ce o, 0@, |
(A2+A3){V Uy =5+ } +(A +A, - As)__ A{E_E}_O (12)
0 09,
(A + A JveuJ( + A - 2)Z v 2m, [r(r%)—ag}:o 1)
2 ¢r _3% _ ae E@U 8U _
283[V ¢,—r—2 > ae} 4A4, +(2B, +2|3)ar ZASL = az} (14)
.. 4, 204, 106" ,p|0U O, | _
283[V b=tz ae} 470, + (2B, B)rae 2A{az ar} 0 =
2B,[V?g,]-4A, +(2B, + 285)68—‘?—2%%[50%)— ?é } =0 (16)
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where
e=10 (rur)+laﬁ+auz
ror r o oz

, 10 1a¢6, ¢Z
g'=——Ir
rar(¢) rae 0z
2 2 2
sza +£a 1 0 0

or’ ror r?o6* ozt
In case of the vectors of macro-displacement U and micro-rotation ¢ depend only on the coordinates I and Z ,
the equations (11) to (16) reduce to

(A2+A3){v U, - } H(A+ A - A)E -2 A{a"’f’} 0 )
og, 09, | _
(A2+A3)[V ue—r—} ZAB[ - 8r}_ (18)
(A, + AV, [+ (A + A, - AS) +2A, [ (¢)}=o (19)
2B [v 4, —’ﬂ 4A4, +(2B, +2B )8e 2&[%}: (20)
283[V2¢9—&:| 4A3¢9_2A3[aauzr } (21)
, oe’ 1o B
2B,[v ¢z]—4A3¢z+(ZB4+ZB5)E—2A3;[8—( 9)}—0 22)
where
10 au,
e=1or ),
10 09,
Tt (rg,)+ oz

> 10 0°
\ 2 = ~— +—+ 7
o ror oz
Equations given by (17) to (22) can be split into two sets of equations. One of these is coupled in
u,,u,,d, and other set is coupled in @,,4,,U,. These two sets are given by the equations (23) to (25) and
(26) to (28).

(8| v —‘j—}(AﬁAz—As)——zA{aﬂ @
(A + A (a 4 - ) Zv2n 2 [r(rqﬁg)}o @
28 [v 4 - @} 4A3¢9—2A3[a“ aa“;} @)
and

b oe’
2B [V ¢,——} 4A4, +(2B, +2B) 2A3[ } (26)
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283[V2¢Z]—4A3¢z +(2B, +285)a;;’ —2&%{5(%)} =0 27)
2, _Yo o 99, |_
(A2+A3{V u, r2}++2A3[ > ar} 0 (28)

The equations (23), (24) and (25) are three mutually independent functions U, ,U,and @, involved. Multiplying

(24) by 1rd, (rfr)and (23), (25) by 1J l(é‘t‘)and integrating between the limits O to oo we find that the system of
partial differential equations (23) to (25) reduces to the following system of ordinary differential equations.

[-(A, + A)ID? ~{-(A +28,)j¢ i, ~(- A — A, + A)DU, ~2A,Dg, =0 @
(- A=A+ AXDU, +[{-(A +28)ID? ~{~(A, + A )lE? |1, +2A,£9, =0 0
2A,Du, +2A U, +[2B,(D% - £2)-4A]p, =0 e

where I,I and %are the Hankel transforms of the functions —U,,—U, and @, respectively and are given
by

0

U, ——[ru, 3,0, O, =—Jru,3,(@dr, g, = [rg,d, (e

0

d d?
Further, D = — and D? = —
dz dz
We represent the equations (29) to (31) as a matrix differential equation

[PD? —QD -R[x =0 (32)
where
—(A, +A;) 0 0 0 CA-A+A) 2A,
P= 0 ~(A,+2A) 0 |, Q=|-(-A-A +A) 0 0
0 0 2B, - 2A, 0 0
—(A+2A,)5° 0 0 u,
R= 0 ~(A,+A)E? —2A¢ | and X =|u,
0 —2A¢ 2B,E% +4A, 4,
We suppose
u, u,
X'=DX =D|u, [, X"=D?X =D?|u, (33)
s D
Now the equation (32) can be expressed as
PX"—-QX'—RX =0 (34)
Multiplying the equation (34) by P ' we have
X"=LX"+L,X (35)
where
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0 “CA-ATA) -2A
Ch—Asak (A, +A) (A +A)
an | FA A+
L =P'Q= (A 28) 0 0
A 0 0
L BS _
(A +2A,)¢7 0 o |
(A, +Ay)
L. =P'R = 0 (A2+A3)§2 2A3§
2 (A+2A,) (A +2A,)
0 -AE (B2
L BB B3 _

We express equations (33) and (35) as a single matrix differential equation
d[x7 [ LXx

dz| X | |1 O] X

where | and O are unit and zero matrices of order 3 respectively.

L X'
Suppose E = L L and Y =
I O X

In view of equation (37) the equation (36) can be written as

d

—Y =EY

dz

where

E:|-eijJ6x6

Assume Y =We® be a solution of equation (38) then we have EW = sW
o —CA-A+A)R 28 (AT2A)
N (A +A) 77 (A+A)T (A +A)
o _CA-AAE  (AEA) 2AS
o (A+2A) T (Ar2) T (A +2A,)
e :_A3 e :_Aaf =83§2+2A3

31 83 ’ 35 83 ’ 36 —83 .

(36)

37)

(38)

(39)

Hence, S is an eigen value of the matrix E and W is the corresponding eigen vector.

The eigen values of the matrix E are the roots of the equation
det(E —sl)=0

(40)
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—S €, &3 & 0 0
g, —S 0 0 e, ey
e 0 —-s 0 e, e
e, NN EL (41)
1 0 0O -s O 0
0 1 0 0 -s O
O 0 1 0 0 -s
Expanding the determinant of equation (41) we get the characteristic equation as
SG_(2§2+§2)S4+(§4+2§2§2)52_544/2:O (42)
where
é/2=§2+|2 andIZZZAS(A2+2A3)
BS (AZ + AS)

The eigen values of the matrix E are the roots of the equation (42) and they are + &,+&,£¢

Lets, =¢&,5, =-&,8;=Cand S, =—¢
The four eigen vectors corresponding to four distinct eigen values S,,S,,S;, S, of the matrix E are obtained by
solving the following homogeneous equations.

—s e, €; €, O 0 W, (s) |
ey, -s 0 0 &y &y |W, (s)
e 0 -5 0 ey ex|W, (s) -0 (43)
1 0 0 -s 0 0 |[W,0(s)
0 1 0 0 -s 0 [W(s)
(0 0 1 0 0 -s|W(9)]

for s=5,,5,,8;5,S,
If we denote the cofactors of the elements of the first row of the coefficient matrix of the equation (43) by
E,(s), for i =1,2,3,4,5,6 then

W(s)=[E,(s) E,(s) E,(s) E,(s) E;(s) E,(5) (44)
are the solutions of the equation (43) and hence they are eigen vectors corresponding to the eigen values
$,,S,,S;3,S, of the matrix E . The elements of equation (44) are given by

coom | Qe A [ (e )
E.6) = 529{%(32 -£%)- ZASB(QIA: fZZ;Z 2)/%)}

E;(s) = Aﬁ{%}

. (5)— s ”{(Al(ZiA;;ﬁ)éz . 2::}_5252 (:2:22)

L (5)— {%(f -£)- ZAQSAT Z:)Ag)}és
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~ Sz_é_,z
R

3
Thus, the solution of the differential equation (38) is given by Das et al. [5]

Y =W (5)exp(5,2) + €, 1 WS)Xp(sD].., -+ (5:2)xp(5,2) + ¢, W S exp(sL
+CW (S;) exp(s;z) +c W (s,) exp(s,z) (45)

where C,,C,,C,,C,,Cg, Cq are arbitrary constants which are to be determined from the boundary conditions.

The equation (45) can be expressed as

Y =(c, +C,ZW(s,) ex(s,2) + C,W (s,) exp(5,2) + (c; +C, 2 W (S,) eX0(S,2) +C,W '(S,) eX0(S, 2)
+CaW (S;) eXp(552) +CW () ex(S,2) (46)
where ( ‘) represents the differentiation with respectto z .
For the half space z > 0, the equation (46) reduces to the form

Y = (s +C,ZIW (5,) X0(5,2) + CW'(5,) eXp(5,2) + CW (s,) eXp(s,,2) (47)
where the constants C,,C,,C, are to be determined from the boundary conditions.
Equating the corresponding elements of matrices of equation (47), we obtain

Uy (2) =[(c; + €, 2)EL(S,) + C,E, (5,)]exp(s,2) + . E, (5,) exp(s,2)
( [(CS + C4Z)E2 (SZ) + C4 EZ (52 )]exp(SZ Z) + CG E21 (54) eXp(S4 Z)
(z

C.

)
6,(2)=[(c, +¢,2)E4(S,) +C,Es (S,) [exp(s,2) + . Ex (S,) eXp(s, 2)
u, (z)=[(c, +¢,2)E, (s,) +C,E, (S,)|exp(s,2) + ¢, E, (5,) exp(s, 2) (48)
u,(z)=[(c, +¢,2)E4(s,) + ¢, Eq (S,) |exp(s,2) + ¢, Ex (5,) eXp(s, 2) (49)
6,(2)=[(c, +¢,2)E4 (S,) + €, Eq (S,)|exp(s,2) + G, Eq (5,) exp(s, 2) (50)

The equations (26), (27) and (28) three mutually independent functions U,,U, and ¢, are involved.

Multiplying (27) by I’JO(§I’) and (26), (28) by rJl((fr) and integrating between the limits O to . We find

that the system of partial differential equations (26) to (28) reduces to the following system of ordinary
differential equations.

[2B,D? —2(B, + B, + B, 2> —4A, |, — 2(B, + B, D¢, —2A,Du, =0 (51)
2(B, + B, D4, +[2(B, + B, + B, )D? —2B,&> —4A,|p, + 2A,u, =0 (52)
2A,Dg, +2AE4, +(- A~ AYD? -2 1, =0 (53

where Z,Zand @are the Hankel transforms of the functions — ¢, ,—¢, and U, respectively and are given
by

¢ =—[rg, 3. (&r)dr, ¢, =—[rg,3o(er)dr, u, = [ru,J,(&r)dr.
0 0 0

We repeat the method adopted for solving the first set of equations. The equations (51) to (53) can be expressed

as vector matrix differential equation.

d

—Y =FY (54)
dz
where
7 T . L
\(={¢r 6, u, ¢ o ug} and F =|f; | (55)
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The elements of the matrix F are given by

B, +B:. )¢
fnzflszflezo’flzz(4 S)vf _A3

(B, +B, + B, )£ +2A,

_—,f =
X 13 B3 14 83
f —f =f. =0 f. = _(BA+BS)§ _ A3§2+2A3 — _Asé:
#ooBo MM (B +B,+B,) ® (B,+B,+B,) * (B,+B,+B,)
2A, _ 2A¢

f32 = f33 = f34

:0’ f3l=—

=£2,

(A +A) = (A A)
foo =1 f =T ="1,="1,="1,=0
foo =1, foy = fyy =y, = fyy = f55 =0.
foa =1, for = fop = oy = fs = fos =0.

(56)

Again, if g is an eigen value of the matrix F then Y =U exp(gz) is a solution of equation (54). Hence, U

is the corresponding eigen vector.
The eigen values of F are the roots of the characteristic equation

[F—gl|=0 (57)
- g f12 f13 f14 O 0
f21 - g 0 0 f25 f26
f31 0 -9 0 1:35 fae -0 (58)
1 0 0 -g 0 0
0O 1 0 0 -g O
0 0 1 0 0 -g
Now simplifying equation (58) and using equation (56) therein we obtain the characteristic equation as
0° -+ A+ B)+ 0*(E R +E R+ BA)-E A A =0 (59)
where
2A,(A, +2
K=&tk =874k K = A ks = A, + As)
(Bs +B, + Bs) (Az"‘As)Bs
The roots are & &,£A,,24, which are the distinct eigen values of the matrix F .
The corresponding eigen vectors are obtained by solving the following homogeneous equation.
- g f12 f13 fl4 O O Ul(g)
f21 -9 0 0 f25 f26 Uz(g)
f31 0 -9 0 f35 fse U3 (g) -0 (60)
1 0 0O -g O 0 (|U,(9)
0 1 0 0 -g 0 |U.(9)
| 0 0 1 0 0 -g]Ug(9)]
for g =9,,1=12,3,45,6.
here 9, =6,0, =—¢,0; =4,0, =—4,05 =4,,0s =—4,.

We denote the cofactors of the elements of the first row of the coefficient matrix in equation (60) by

F.(9),1=123,4,56. then
u(g)= [Fl(g) F(9) K@) F@) K@ K (g)]T are the solutions of the equation (60) and

hence they are eigen vectors corresponding to the eigen values ¢;,1 =1,2,3,4,5,6 of the matrix F.
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The expressions of F,(g),i =1,2,3,4,5,6 are

F.(g)=—-g° + 93[5 (B +By +2B, )+ 2%}_ gé{(Az A )BLER + 2A0(A, +2A3)}

(B, +B; +B,) (B, +B, +B; A, +A,)
L Rk or i o]
6=~ Gy QZ{ZAEE: (;BB: i, BLZ)AS}
i oBB Ul o
=0 ) ) 7B SRR
LR e i Roear s reva

Since g1, 02, U3, 04, Us, g are the distinct roots of characteristic equation (59).

The general solution of the differential equation (55) is given by

Y =CU(g,)ex(9,2) +C,U(g,)ex(9g,2) +CU(g,) exp(g,2) +C,U(g,)ex(9,2) +

CU (9s)exp(gs2) +CU (gg) exp(9s2)
where C; , i=1,2,3,4,5,6 are arbitrary constants.

From equation (61), we have
J— 6

¢rl(z): ZCiFl(gi)exp(giz)

¢z (Z): ZCi F,(9;)exp(g;2)

i=1

u,(2)=3 CiFs(g)exn(9;2)

b, (Z): ZCiF4(gi)exp(giZ)

4. (2)= > C.F.(g,) ex0(0,2)

i=1

0,(2)= 2 CiFe(9.)09(9,2)

Now, we consider the equations of motion corresponding to micro-strains.

(61)

(62)

(63)

(64)

The equations of motion under the absence of body forces and couples the equation (3) involving micro-strains

can be expressed as

Blvz¢pp + 282V2¢rr - A4¢pp - 2A5¢rr =0
Blvz¢pp + 282v2¢96 - A4¢pp - 2A‘5¢0€ =0
Blv2¢pp + 282V2¢zz - A4¢pp - 2A§¢zz =0

(65)
(66)
(67)
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ZBzV2¢(ra) —2A¢,5 =0 (68)
ZB2v2¢(rz) - 2A5¢(rz) =0 (69)
2B,V*#a) —2Afa) =0 (70)
where

> 10 &°
Vet e e M e et n

Adding equations (65), (66) and (67) we have

(3B, +2B,)V?¢,, —(3A, +2A )p,, =0 (71)
Subtract equation (66) from equation (65) and subtract equation (67) from equation (66) we get
ZB2V2(¢rr _¢€9)_2A‘5(¢rr _¢6h9):0 (72)
282V2(¢99 _¢zz)_2As(¢99 _¢zz):O (73)
From equation (68) we have
V2¢(r0) - ml2¢(r9) =0 (74)
where
m’ = A

BZ
The general solution of equation (74) is given by
Hro)(r,2)= [all o(mr) +a, K, (m, r)Ibl cos(nz) +b, sin(nz)] (75)
As the equations (69) and (70) are similar to equation (68). Hence the solutions of ¢(rz)and ¢(92) are given by
B (1, 2) = [a3 I, (m,r)+a,K,(m, r)Ib3 cos(nz) + b, sin(nz)] (76)
Hay(r.2)= [a5 I, (m,r) +a K, (m, r)Ib5 cos(nz) + b, sin(nz)] 77)

where |o(m1r) and Ko(mlr) are modified Bessel function of the first and second kinds respectively.
From equation (72) we have

VZ (¢rr - ¢99 ) - mlz (¢rr - ¢9€ ) =0 (78)
The general solution of equation (78) is given by

(6 = b0 Xr.2) =[a 1o (myr) + 3, K, (myr) b, cos(nz) +b; sin(nz)] (79)
Similarly, the general solution of equation (73) is given by

(¢09 — ¢, )(I’, )= [ag lo(myr) +a,K, (m1r)][b9 cos(nz) +by, sin(nz)] (80)
From equation (71) we have

V24, —mig,, =0 (81)
where

(A +2A)
> (3B, +2B,)

The general solution of equation (81) is given by

By (1. 2) =[an 1o (M, 1) + 8, Ko (M) [, cos2) + D, sin(nz)] (82)
Now, solving equations (79), (80) and (82) we get

¢ (r,2) =[a, 1, (m,r) +a,K, (m;r) b, cos(nz) +b; sin(nz)]+ [a, 1, (m,r) +a,,K, (myr)]

[b, cos(nz) +b,, sin(nz)] +[a,, 1, (m,r) +a,, K, (m,r)]b,, cos(nz) +b,, sin(nz)] (83)
P (1, 2) = [a7 Iy (M) + 35K, (mlr)][b7 cos(nz) + by sin(nz)] (84)
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#.(r.2) = [a; 1, (myr) +a,K, () ]b, cos(nz) +b sin(nz) ]+ [ay 1, (myr) +a,, Ky (Myr)]
[b, cos(nz) + by, sin(nz)] (85)
here @, to a,, and b, to b, are arbitrary constants.

The arbitrary constants involved in equations (48), (49), (50), (62), (63), (64), (83), (84), (85), (75), (76)
and (77) can be determined using specified boundary conditions of a particular problem. Once, these constants
are found, it is possible to find displacements, micro-rotation, stress and mirco-streses. The results of micropolar
theory Mahalanabis and Manna [7] are obtained as particular case of this paper when

2B, =a,2B, = 8,2B, =y, 2A, =, A +2A, =4, A,— A, = and B,,B,, A,, A, — 0.
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